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By adopting the phase convention of Condon and Shortley for spherical harmonics, it is shown 
how to determine in a standard way phases for electronic wave functions of a diatomic molecule. The 
method proposed is compared with the united atom method. On the basis of the phase convention 
introduced, the inversion eigenvalue of a non-Z state in a diatomic molecule is expressed in terms of 
quantum numbers characterizing the state in question. The inversion eigenvalue expressions are 
used to give an extended definition of Mulliken's c and d notation. 

Mit der Phasenkonvention von Condon tL Shortley fiir die Kugelfunktionen als Grundlage 
wird eine Standardmethode angegebeu, um die Phasenfaktoren der elektronischen Wellenfunktion 
eines zweiatomigen Molekiils zu bestimmen. Diese Methode wird mit der Methode des vereinigten 
Atoms verglichen. Auf der Basis der eingefiihrten Phasenkonvention wird der Inversionswert eines 
Zustandes in einem zweiatomigen Molekiil, der nicht vom X-Typ ist, durch die Quantenzahlen aus- 
gedriickt, die den vorliegenden Zustand charakterisieren. Die Ausdriicke fiir die Inversionseigenwerte 
werden benutzt, urn eine erweiterte Definition yon Mullikens c- und d-Bezeichnungen zu geben. 

En adoptant la convention de phase de Condon et Shortley pour les harmoniques sph6riques, 
on montre comment d6terminer d'une mani&e standard les phases des fonctions d'onde 61ectroniques 
d'une molecule diatomique. Sur ta base de la convention de phase ainsi introduite la valeur propre 
d'inversion d'un 6tat non X dans une mol6cule diatomique est exprim6e en termes des hombres 
quantiques caract6risant l'6tat en question. Les expressions des valeurs propres d'inversion sont 
utilis~es pour donner une d6finition 6tendue des notations c et d de Mulliken. 

1. Introduction 

The  s tate  funct ions  of  a d i a t o m i c  molecule ,  l ike those  of  any  system of  part ic les ,  
m a y  be cha rac te r i zed  by  their  b e h a v i o u r  unde r  invers ion,  i.e. a change  in sign 
of  the l a b o r a t o r y  fixed coo rd ina t e s  of  all  the  e lec t rons  a n d  nuclei. Hence,  all  the  
energy levels of  the  molecu le  can  be classif ied as negat ive  or  posi t ive,  depend ing  
on whe ther  the  c o r r e s p o n d i n g  wave funct ion  changes  sign or  no t  on  invers ion.  
I t  is well  k n o w n  tha t  the  invers ion  e igenvalues  are  given by  the factors  ( - 1 )  N 
and  ( -  1) N+I for 2~ +- and  X - - t e r m s ,  respect ively.  F o l l o w i n g  the usual  convent ion,  
N is the q u a n t u m  n u m b e r  a s soc ia t ed  wi th  the to ta l  angu la r  m o m e n t u m  exclusive 
of  spin of  the molecule .  The  de r iva t i on  lead ing  to  the  factors  above,  is found  in 
mos t  t ex tbooks  dea l ing  wi th  m o l e c u l a r  physics,  for example  Ref. [1].  As for non-  
X-states, it  can  be shown tha t  given wave funct ions  which  differ on ly  in the direc-  
t ion  of  the  angu la r  m o m e n t a  a long  the in t e rnuc lea r  axis, one can a lways  find a 
l inear  c o m b i n a t i o n  of  these which  is i nva r i an t  under  invers ion,  and  one which 
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reverses sign under inversion. However, the question of which of the eigenvalues 
+ 1 and - 1 belongs to a definite linear combination has not yet been answered 
satisfactorily. 

The main purpose of this paper is to show how the phases for electronic wave 
functions may be determined in a standard way, and accordingly how the inversion 
eigenvalue of the total wave function may be expressed in terms of quantum num- 
bers characterizing the function. The result will be applied to give an extended 
definition of the c- and d-designation of rotational levels introduced by Mulliken. 

2. General Considerations 

In order to describe our molecular system we introduce two right-handed 
cartesian systems of axes, both with their origin at the center of mass. The axes 
in one of the frames, (X, Y, Z), are chosen with fixed directions in the laboratory, 
and these axes will be referred to as the laboratory-fixed axis system, or more 
briefly as the laboratory system. The other system, the molecular frame, is rigidly 
connected to the nuclei and rotates with them. The z-axis coincides with the 
axis of the molecule from (say) nucleus 1 to nucleus 2. We shall allow the choice 
of the x-and y-axes to be quite arbitrary. The orientation of the rotating frame may 
be specified by means of eulerian angles (~,/3, ?) as defined by Edmonds [2]. 

The treatment will be restricted to two types of molecular states. When the 
electronic spin functions are quantized with respect to their projection upon 
the molecular axis, we shall deal with eigenfunctions corresponding to Hund's 
case (a). If, on the other hand, the spin functions are quantized with respect to the 
spacefixed Z-axis, we shall consider eigenfunctions corresponding to Hund's 
case (b). However, our conclusion may be easily extended to any coupling situa- 
tion in the molecule, since the wave functions can be expressed as linear combina- 
tions of either case (a) or case (b) functions. 

Hund's case (a) functions may be written in symbolic vector notation as 

qvA,S = qA,S Iv , (1) 

where the decomposition of the function into a product of an electronic, vibrational, 
and rotational part is a consequence of the Born-Oppenheimer approximation. 
The electronic functions are characterized by the eigenvalues S(S + 1)h 2, Zh, 
and Ah of the commuting angular momentum operators S 2, St, L~. As usual S and L 
denote the electronic spin and orbital angular momentum operators, respectively. 
The letter q in the state symbol represents the other quantum numbers necessary 
to specify the electronic state. 

Since the vibrational part of the wave function Iv), is invariant under inversion, 
it will for simplicity be omitted in the further treatment. 

The rotational part of the wave function, [JOM), is common eigenfunction 
of the three commuting angular momentum operators j2, Jz, and J, with eigen- 
values J(J+ 1)h 2, Mh, and Qh, respectively. In agreement with conventional 
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notation, the total angular momentum exclusive of nuclear spin, is denoted by J. 
According to Edmonds [2], p. 65, the rotational function IJf2M) can be re- 
presented as a function of the eulerian angles (~, fl, ~). 

Hund's case (b) functions may in the uncoupled representation be written as 

Ms MN Ms/ l Ms 
(2) 

where we have omitted the vibrational part of the wave function. The spin function 
is quantized with respect to S 2 and Sz. The rotational function INAMN) is the 
common eigenfunction of the commuting operators N 2, Nz, and Mz. The total 
angular momentum exclusive of spin is in this paper denoted by N. The eigenvalues 
of the last three operators considered, are N(N + 1)h 2, Ah, and MNh. The eigen- 
functions INAMN) may be expressed in terms of the eulerian angles I-2]. 

In the coupled representation we form eigenfunctions of the operators j2 
and Jz. The coupled eigenfunctions may be written as a linear combination of the 
uncoupled functions as follows: 

qA A qA s ~ SNJM>. (3) 

Ms/ I NM/ 

The expansion coefficients in Eq. (3) are the ordinary Wigner or Clebsch-Gordon 
coefficients. 

By forming the symmetric and antisymmetric linear combinations 

lOs, A, J) = - -~  qA Z q - A - Z - , (4) 

1 { (SN, J \  q - S N ) A  JM) } 
IAs, a , J > = ~  qA A M /  +_ A ( (5) 

we get eigenfunctions of the inversion operator. In Eqs. (4) and (5) the indices S 
and A correspond to the plus and minus sign, respectively, and it is supposed that 
at least one quantum number associated with an angular momentum operator 
quantized along the molecular axis, is different from zero. The problem in question 
now, is to express the inversion eigenvalues of the wave functions defined by Eqs. (4) 
and (5) by means of quantum numbers. 

3. The Inversion Operator Applied to the Total Wave Function 

As can be shown by simple geometrical considerations, the inversion of the 
coordinates in the laboratory system is equivalent to a reflection of the molecular 
fixed electronic coordinates followed by a rotation of the molecular frame through 
an angle H about an axis through the origin and perpendicular to the plane of 
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reflection. The rotation may be expressed by means of eulerian angles. If we choose 
the xz-plane as the reflection plane, then the eulerian angles ~,/3, and 7 in the 
rotational wave function have to be replaced by n + ~, 7r -/3, and rc - V, respectively. 
Denoting the reflection operator by tr~, and the rotation of the molecular frame 
by Q, the effect of applying the inversion operator I to the functions given by 
Eqs. (1) and (2), may be written 

and 

I qA Y_, =a~z Q IJf2M) 

I qh =a~ qh QINAMN). 
MsMN Ms 

The effects of the operators a~z and Q will be discussed separately. 

(6) 

(7) 

3.1. The Operator Q Applied to the Rotational Wave Function 

According to Edmonds [2] the rotational wave functions [NAMN) are, 
apart from a normalization factor, identical with the D-functions, D~M,,(~, fl, 7), 
which define the irreducible representation of the rotation group R 3. As pointed 
out previously, the operator Q implies that the eulerian angles ~, fl, and 7 should 
be replaced by ~z + ~, ~z - fl, and ~ - V. Utilizing the symmetry properties of the 
D-functions, expressed by Eqs. (4.2.4) and (4.2.6) of Ref. [2], we arrive at the follow- 
ing result 

Q[NAMN5 = ( -  1)N-A IN, - A, MNS. (8) 

Since the matrix elements D~u(o~,/3, V) may be regarded as a representation of the 
eigenvectors IJ~M), [2] p. 65, the equation 

Q[Jf2M) = ( -  1)J-~ J, - f2, M)  (9) 
must also hold. 

3.2. The Operator a~,~ Applied to the Electronic Functions 

In this section we shall consider the effect of the reflection operator axz applied 
to the electronic wave functions 

qAS~ and qAS ~.  

Ms/ 

In recent years this problem has been dealt with by Mustelin [3] and Hougen [4]. 
Mustelin's treatment is restricted to singlet states. Hougen's treatment seems to be 
based on the assumption that the electronic function may be written as a product 
of an orbital function ]A) and a spin function ]SZ). Taking into account the anti- 
symmetric character of the electronic function with respect to interchange of any 
pair of electrons, this assumption is only valid for molecules with two electrons. 



402 I. R0eggen: 

In both of the mentioned works the electronic functions are built up of atomic 
configurations of the "united atom". When applying the reflection operator ~rxz 
to the electronic function, this leads to an ambiguity in the sign of a phase factor, 
i.e. the phase factor 6 in the equation 

can not be determined since it depends on the orbital quantum number L. How- 
ever, L is not a good quantum number in a diatomic molecule, so no particular 
value of L suggests itself for use in the expression for 6. 

In our approach to the problem in question, we shall build up the electronic 
functions from molecular orbitals. The molecular orbitals are supposed to be 
linear combinations of atomic orbitals centered on the various nuclei. Such 
LCAO MO's may be written as 

[q2) = ~ Ikl2) (kl21 q2). (11) 
k,l 

The quantum number l and 2 define the eigenvalues of the electronic angular 
momentum operators 12 and !=. The quantum number k is a label to distinguish 
between AO's which can no longer be distinguished by symmetry characteristics. 
The angular part of the AO's is supposed to be spherical harmonics YI(O, q~). 
Adopting the phase convention of Condon and Shortley [5] for the spherical 
harmonics, the result of applying the operator ax= to an atomic orbital is given 
by the equation 

a=, I kl2) = ( -  1)z I k/, - 2 ) .  (12) 
Hence, 

a=z I q2) = ( -  1)a I q, - 2) (13) 

since the expansion coefficients (kl21q2) and (kl, - 2 1 q , - 2 )  are equal. 

The effect of the reflection upon the molecule - fixed spin functions which are 
quanfized with respect to a component along the molecular axis, is readily shown 
to be 

ax=~b~ = ( -  1)�89 o" = +_ �89 (14) 

when the intrinsic parity of the spin functions is taken to be even (Trinkham [6], 
p. 140). 

Space-fixed spin functions are not effected by the operator a~z since they are 
defined in the laboratory system, and they are invariant under an inversion of 
the space-fixed axes. 

In constructing the electronic functions from the molecular spin orbitals, 
Iq~2~)q~,, we shall follow the account given by Petrashen and Trifonov [7]. 
A short description of the construction is also to be found in Ref. [1]. 

The complete antisymmetric wave function of a molecule with n electrons, 
which is at the same time a common eigenfunction of the angular momentum 
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operators L~, S z, and S,, is expressed by the equation 

peSn 
(15) 

(i) 
The permutation p = p~, which denotes an arbitrary element of the symmetric 
group S,, should be applied to the arguments of the functions in Eq. (15). e(p) is 
the number of binary permutations in p and C is a normalization factor. 

The spin functions 

I SS(0-1, . . . ,  0-.)> 

transform in accordance with an irreducible representation of the permutation 
group, characterized by the following Young diagram: 

n y+s 
n 

- - - S  
2 

n n 
The diagram consists of two rows of length #1 = -~- + S and ~2 = 2 -  - -  S, 

respectively. 
Applying the Young operator 

~{~ = ~ Q ~ ( -  1)~(P)P (16) 
q P 

to the spin function 

~(0.1, ..., 0.,) (17) 

= q~=�89 ~ ~ 1)...~b~,,=_ �89 

we get the desired eigenfunction of S 2 and Sz, i.e. 

ISS(al ... .  , a,)) =~{.} ~(al, ..., a,). (18) 

The effect of the operator l~{~ is to first perform antisymmetrization with respect 
to the spin functions whose arguments lie in the columns of the normal Young 
tableaux and then to perform symmetrization with respect to the functions in 
each row. 

It is obvious that the constructed function 

is an eigenfunction of S, with eigenvalue 

Sh = (0.a + 0- 2 + . . .  + 0- . )h.  (19) 

It can also be shown that the function in question is also an eigenfunction of S z 
with eigenvalue S(S + 1)h z [7, 8]. 
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The electronic orbital functions 

}qA(r,~,..., rp.)> 

transform in accordance with an irreducible representation of the permutation 
group for which the Young diagram consists of two columns. This Young diagram 
is the transposed of the corresponding diagram associated with the spin functions 

�9 /'/ ?/ 
rSZ>, i.e. the length of its columns as ~- + S and -~- - S, respectively. In the normal 

n 
Young tableaux to the left we have put k = ~- + S. Applying theYoung operator 

~(~) = 2 8  ~ ( -  1) ~(p) p (20) 
q p 

to the product function 

IqlAl(rl)> Iq222(r2)> ... Jq,2,(r,)> 

1 k + l  

2 k + 2  

we get the orbital function which is to be combinedwith the spin function 1S2~) 
in Eq. (15). The operator (2(z~ implies antisymmetrization with respect to orbitals 
whose numbers lie in the columns of the normal Young tableaux and thereafter 
symmetrization with respect to orbital indices lying in each row. Antisymmetriza- 
tion applied to the columns of the tableaux yields 

( -  1) ~t')/~lqa )~l(rl)> "'" [q.2.(r.)> 
p 

= det{Iq121(ri)> ." Iqk2k(rk)>} (21) 

�9 det {Iqk+ 12k+ l(rk+ 0>""  Iq.2.(r.)>} �9 

The resulting product of two determinants must them be symmetrized with respect 
to pairs of functions whose numbers lie in the rows of the Young tableaux�9 Eq. (21) 
shows that equal orbitals have to be put into different columns of the Young 
tableaux if a nonzero result is to be produced�9 

It can readily be shown that the function 

IqA> =~(~  Iq121 (r0> "" Iq,2,(r,)> (22) 

is an eigenfunction of the operator L~ with eigenvalue 

Ah = (21 + 22 + ... + 2.)h. (23) 
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Let us now apply the reflection operator axz to the function given by Eq. (15). 
Since a ~  commutes with the permutation operators, we must have 

~r~,z q h ~ =  E C(-1)~(P)P~r=lqa(rl,'",r.))lSZ(~rl,'",r �9 (24) 
p e S n  

When A ~ 0, Eqs. (13) and (22) imply 

= ( -  1)aI)(~)Iql, -21(v0> "'" Iq., - 2 . ( r . ) )  (25) 

= ( -  1)-alq, - A > .  
Hence, 

ax. [qA) = sq [q, - A) (26) 

when Z-states are included. The quantity sq is equal to ( - 1 )  a, + 1, and - 1  for 
non-Z-states, S + states, and Z -  states, respectively. 

The reflection operator applied to the spin function gives 

~rxzlSZ>=(-1)~_zlS, - Z,) . (27) 

In the derivation of Eq. (27) we have made use of Eqs. (14), (17), and (18). 
By substituting the results of Eqs. (26) and (27) into Eq. (24), one obtains 

The construction of the functions 

q A S ~  
Ms/ 

is quite analogous to the one given for electronic functions with spin quantized 
with respect to the internuclear axis. Remembering that the reflection operator 
has no effect on the space fixed spin functions, we arrive at the result 

s / s) 
~xz qAMs =sq q - A  , (29) 

Ms 
where sq is defined in connection with Eq. (26). 

Let us now consider the united atom model. The state vectors in question 
may be expanded in eigenvectors of the united atom. 

qASs) =~ a L S ) ( a  LS qA S) 
aL  (30) 

q-A  - S  ) =~ a _ L _ S ) ( a _ L _  S q _ A _ S ) ,  
aL 

28 Theoret. chim. Acta (Bed.) Vol. 21 
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where 

I. Roeggen: 

s) 
is an eigenvector of L 2 the total electronic orbital angular momentum�9 It may 
be given as the antisymmetric part of the product vector ]aLA)]SS) (if this 
vector has an antisymmetric part), i.e. 

a A S =(2nnlaLA ) ISZ) , (31) 

where the projection operator is defined as 

1 _ 1)~(p) p I~A" =-ff~-.w Z ( �9 (32) 
peSn 

Following Mustelin [3], the eigenvectors [aLA> shall be considered as a linear 
combination of the completely uncoupled eigenvectors 

]a11121) [a212 22) "" ]a , l ,2 . )  

by means of successive Wigner transformations�9 

]aLA) = ~ [ai/12i)  1a21222) ... l a . / ,2 . )  
~L1 ~2A12~3"' 

�9 ~11/~1 12,~2 ] 1112L12A12)  ~ L 1 2 A 1 2 1 3 ~ 3  ] L 1 2 1 3 L i . . . 3 A i . . . 3 )  ~ 

. . . . . . . . . . . . . . . . . . . . .  (33) 

�9 (L i  ..... -2A1 ..... -2 / , , - i2 , , - i lL1 ..... -2 / , , - iL l  ..... -1A~ ..... - i>  

�9 ( L  i ..... -1A1 ..... - i / ,2 . [L1  ..... - i l ,  LA>. 

By making use of Eq. (12) and the following property of the Wigner coefficients 

(Jl mljz m2 [JlJzJ rn) = ( - 1) ~1 + j z - - j  ~Jl - -  mlJ2 -- m2 IJiJ2J -- m) (34) 

one easily obtains 

Oxz ]aLA) = ( -  1)~ ti-L+a laL - A ) .  (35) 

Since axz commutes with the permutation operators, and taking into account 
Eq. (27), the equation 

L S )  - L + A + S - Z  L S> 
Oxz a A = wa(-  1) a - A - 27 (36) 

must hold. In Eq. (36) the parity Wa of the united atom state is introduced�9 

" 1 ~ l  (37) W a = [ - -  )i ~" 

Let us now return to Eqs. (30)�9 In order to determine the phase factor in the equation 

qAZ =5 q - A -  (38) 
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it is necessary to know those of the state vectors in the considered expansion which 
are the correct ones in the united atom limit. However, it is very difficult to deter- 
mine these particular united atomic states if energy calculations are not performed 
for decreasing values of the internuclear distance. 

The results of the preceding paragraph show that a consistent choice of phasis 
for electronic wave functions can rarely be found on the basis of the united atom 
model. On the other hand, the sketched MO method may be a standard way of 
determining phases for electronic wave functions even if the detailed configuration 
is not known. 

4. The Inversion Eigenvalues Expressed in Terms of Quantum Numbers 

By combining the results obtained in Sect. 3.1 and 3.2, it is possible to express 
the eigenvalues of the functions given in Eqs. (4) and (5) in terms of quantum 
numbers. 

From Eqs. (9) and (28) it follows 

I [  ~2s, J )  = s~(- 1)a+J-sl~ s, J )  
(39) 

I1 ~A, J )  = sq(-- 1) a+s-s+l [~2 a, J ) .  

Application of Eqs. (8) and (29) yields 

I]A s, N J )  = sq( - 1)N-a I As, N J )  
(40) 

I]A A, N J )  = sq( - 1) N-A + 1 I AA, N J ) .  

In the singlet case, we obviously have the equations 

l[As, J )  = sq(-  1)s-a I As, J )  
(41) 

I IAA, J )  = sq ( -  1) s -a+  1 I AA, j ) .  

If A # 0, then sq = ( -  1) A. By substituting this result in Eqs. (40), it is clearly seen 
that the states IAs, N J )  and IAA, N J )  behave under inversion in the same way 
as Z +- and Z--states, respectively. 

5. Application to Mulliken's c und d Notation 

The results of the preceding section can be applied to the classification of 
states, particularly to the c- and d- designation of rotational levels. Mulliken [9] 
defines the c- and d-series as follows. For  singlet and case (b) he calls the series c 
or d depending on whether the lowest level is positive or negative. The definitions 
of c- and d-levels in case (a) are made by considering the adiabatic correlation of 
cases (a) and (b). For  regular and inverted triplet states and inverted doublet 
states the definitions are analogous to the singlet case. For  regular case (a) doublet 
states the c and d are changed compared to the singlet case. It should be noted 
that Mulliken's definitions are based on the inversion character of the lowest 
rotational level. However, which state it is that corresponds to a definite c- or d- 
level is not determined. Hence, Mulliken's c- and d-designation can not serve as 
good quantum numbers. 

28* 
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For singlet states Herzberg [10] has redefined Mulliken's c- and d-designation. 
According to Herzberg's definitions a series of rotational levels in which the even 
levels are positive and the odd negative, is designated as c-levels, and a series in 
which the even levels are negative and the odd positive, is designated as d-levels. 
A comparison with Eq. (41) shows that the states [As, J) and IAA, J )  correspond 
to c- and d-levels, respectively. In the case of intermediate coupling (multiplet 
states) Herzberg's designation cannot be adapted since states with different values 
of N are mixed. 

On the basis of this work it is possible to give an extended definition of the c- 
and d-levels which will cover the intermediate coupling case, and the redefined c 
and d quantities may serve as almost good quantum numbers. 

Using Hund's case (b) functions as basis-functions, we propose that a c-level 
should correspond to a state function which can be written as a linear combina- 
tion of functions from the set 

{[as, U = J - S , J ) ,  ] As, N = J - S +  2, J), . . .  
IAa, N = J - S +  I,J), IAa, N = J - - S + 3 ,  J), . . .  
I Z + , N = J - S , J ) ,  [ X + , N = J - S + Z , J ) , . . .  
I ~ - , N = J - S + I , J ) ,  I Z - , N = J - S + 3 , J ) , . . . } .  

A d-level should correspond to a state function that is an element of the subspace 
generated by the following set of basis functions: 

{IAs, N = J - S +  1, J ) ,  IAs, N = J - S +  3,J>,... 
IAa, N = J - S , J > ,  IAa, N = J - S + 2 , J > , . . .  
I Z - , N =J - -S , J ) ,  IS , - ,N=J--S+2,  J), . . .  
I S ,+ ,N=J-S+ I,J), IZ ,+ ,N=J-S+ 3, J) , . . .} .  

The number of functions in the sets considered, depends on the multiplicity. 
Eq. (40) shows that the inversion eigenvalue of the functions in the first set, is 
given by the expression ( -  1) s-s, and ( -  1) s-s+1 is the eigenvalue associated with 
the second set of functions. 

If Hund's case (a) functions are used as basis functions, the c- and d-designation 
may be introduced in the following way: For non-E-states, the c(d)-designation 
should be used for levels that correspond to state functions which can be expressed 
as a linear combination of symmetric (antisymmetric) case (a)-functions. As for 
the Z-states, the symmetric (antisymmetric) combination of a Z+-state and the 
antisymmetric (symmetric) combination of a Z--state should correspond to a 
c(d)-level. These definitions imply, as can readily be seen from Eq. (39), that the 
inversion eigenvalues of states corresponding to c- and d-levels are ( - 1 )  s-s 
and ( - 1 )  s-s+1, respectively. 

As a conclusion to these extended definitions of c- and d-levels, we may point 
out that a c-state (c-level) can never perturb a d-state (d-level) and vice versa, 
when state functions of the same multiplicity are considered. 
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